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Invitation

The Space of Continuous Functions

Let     be the collection of continuous real functions defined on the interval     ,

and let  be a real number satisfying  ≤   ∞ .

The metric  on     is defined by

  




 


.

Unfortunately, the metric space       is not complete.

What space is the completion of      ?
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Invitation

Length of an Interval and Its Generalization

Consider the subsets  ,  of ℝ .

Let   and  be the lengths of sets  and  (whenever it is defined).

It is quite natural to expect that the function  would have the following properties:

§ The value of length is non-negative.

§ The length of ∅ is defined. (and equals zero.)

§ If the lengths of  and  are defined, then the lengths of ∪ , ∩ , ╲ are 

defined.

§ If ⊆  , then ≤ .

§ If the length of ∩ is zero, then ∪  .
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Measure

Definition: σ-Algebra.

A σ-algebra (also known as a σ-field) is a class  of subsets of a set  with the properties:

(a) Both ∅ and  belong to  .

(b) ∈ ⇒ ╲∈ .

(c) If ∈ for      ⋯ , then 
  

∞

∈ .

A set ∈ is said to be measurable.

Corollary. If ∈ for      ⋯ , then 
  

∞

∈ .
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Measure

Definition: Measure, Measure Space.

Let  be a set and let  be a σ-algebra of subsets of .

A function    → ℝ


is a measure if it has the properties:

(a) ∅ ;

(b)  is countably additive, that is, if ∈ (for      ⋯ ) are pairwise disjoint sets, 

then


  

∞

 
  

∞

.

The triple    is called a measure space.

If  is a measure on  and  ∞ , then  is called a finite measure. 

In this case,    is called a finite measure space.

ℝ

  ∞
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Measure

Definition: “Almost Everywhere”

Let    be a measure space.

§ A set ∈ with    is said to have measure zero (or, is a null set).

§ A given property  of points ∈ is said to hold almost everywhere if the set

{    is false }

has measure zero; alternatively, the property  is said to hold for almost every ∈. 

The abbreviation “a.e.” will denote either of these terms.
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Measure

Example 1. (Counting Measure)

Let   ℕ , let  be the class of all subsets of ℕ .

For any  ⊆ ℕ , define   to be the number of elements of  .

Then  is a σ-algebra and  is a measure on  .

This measure is called counting measure on ℕ .

ü The only set of measure zero in this measure space is the empty set.
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Measure

Example 2. (Lebesgue Measure)

There is a σ-algebra  in ℝ and a measure  on  such that for any finite interval 

     ,

∈  and      .

The sets of measure zero in this space are exactly those sets  with the following property: 

for any    there exists a sequence of intervals  ⊆ ℝ ,      ⋯ , such that

⊆ 
  

∞

  and  
  

∞

 .

This measure is called Lebesgue measure and the sets in  are said to be Lebesgue 

measurable.

ü Lebesgue measure is completely characterized by the above two properties.
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Measure

Example 2. (Lebesgue Measure)  (continued)

§ Any countable subset of ℝ has Lebesgue measure zero.

§ The Cantor’s ternary set is uncountable set but it has Lebesgue measure zero.

§ If a set includes an interval of positive length, then the set has a positive measure.

There is no function  from ℘ℝ to   ∞  that satisfies all the following properties:

(i) If  is an interval, then   is the length of  .

(ii) If  has Lebesgue measure zero, then   .

(iii) If   ∈ is a collection of pairwise disjoint sets and  
∈

, 

then  
∈

.
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Measure

Example 3. (Borel Measure)

Suppose that the usual topology is given on ℝ .

Then there exists the smallest σ-algebra   that contains all the open intervals of ℝ .

An element of   is called a Borel set, and any measure defined on the σ-algebra of 

Borel sets is called a Borel measure.
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Measure

Lebesgue Measure and Borel Measure

ü Any Borel set is Lebesgue measurable.

ü A Lebesgue measurable set is not always Borel measurable.

ü If  is the Borel measure with the property      for any interval  , 

then the Lebesgue measure is the completion of . This idea extends to 

finite-dimensional spaces ℝ but does not hold, in general, for infinite-dimensional 

spaces. Infinite-dimensional Lebesgue measures do not exist.

ü Assignment. What is the completion of a measure?
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Lebesgue Integral

The Steps of Defining the Lebesgue Integral

1. Simple Functions

2. Non-negative Simple Functions

3. Non-negative Measurable Functions

4. Measurable Functions

5. Complex-Valued Measurable Functions
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Lebesgue Integral

Definition: Simple Functions.

A function    → ℝ is simple if it has the form

  
  



  ,

for some ∈ℕ , where ∈ℝ and ∈ ,      ⋯  .

In this definition,  's are not necessarily pairwise disjoint. But any simple function is 

expressible in the form of the sum of simple functions where  's are pairwise disjoint and 

all  's are distinct.
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Lebesgue Integral

Definition: Lebesgue Integral of a Non-negative Simple Function.

If  is non-negative and simple, then the integral of  (over , with respect to ) is defined 

to be




   
  



.

(We allow ∞ here, and we use the algebraic rules in ℝ


.) 

The value of the integral can be infinity.
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Lebesgue Integral

Example 4. (Practice)

Let      ,      ,      ,   ∪∪ , and let

   .

(1) Find the decomposition for  , that is, express  in the (canonical) form

  
  



 

where  's are pairwise disjoint and  's are distinct.

(2) Find 


  where  is the Lebesgue measure.
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Lebesgue Integral

Example 5. (Practice)

Find the integral


   

 

where    if  is rational, and    otherwise, and  is the Lebesgue measure.
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Lebesgue Integral

Definition: Lebesgue Integral of a Non-negative Measurable Function.

A function    → ℝ is said to be measurable if, for every ∈ℝ ,

   ∞ ∈ .

If  is measurable then the function    → ℝ and  ±   → ℝ , defined by

   ,  ±   max±  

are measurable.

If  is non-negative and measurable, then the integral of  is defined to be




   sup


    is simple and  ≤  ≤  .

  ∞ ∈   



I Seul Bee A Short Introduction to Lebesgue Integration 19 / 57

Lebesgue Integral

Theorem: Measurability of a Function.

A function    → ℝ is measurable if and only if one of the following is true.

(a) For every ∈ℝ ,    ∞ ∈ .

(b) For every measurable subset  of ℝ ,    ∈ .

(c) For every open subset  of ℝ ,    ∈ .

Theorem: Algebra of Measurable Functions.

(a) If    → ℝ and    → ℝ are measurable, then   ,   ,  are measurable. 

If ≠  for all  , then  is measurable.

(b)    → ℝ is measurable if and only if both   and   are measurable.

(c) If  is a sequence of measurable functions, 

then sup  , inf  , limsup  , liminf  are measurable.
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Lebesgue Integral

Example 6. (Practice)

Find the integral


   

 

where    and  is the Lebesgue measure.

What if  is any continuous function?
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Lebesgue Integral

Definition: Lebesgue Integral of a Measurable Function.

If  is measurable and 


  ∞ , then  is said to be integrable .

If  is integrable, then the integral of  is defined to be




  


   


   .

It can be shown that if  is integrable then each of the terms on the right of this definition 

are finite, so there is no problem with a difference such as ∞∞ .
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Lebesgue Integral

Definition: Lebesgue Integral of a Complex-Valued Function.

A complex-valued function  is said to be integrable if the real and imaginary parts of 

are integrable, and the the integral of  is defined to be




  


Re   


Im .
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Lebesgue Integral

Definition: Lebesgue Integral of a Function on a Subset.

Suppose that ∈ and  is a real or complex-valued function on  . 

Extend  to a function  on  by defining    for ∉ . 

Then  is said to be integrable (over ) if  is integrable (over  ), and we define




  


 .

The set of -valued integrable functions on  will be denoted by ℒ
  .
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Lebesgue Integral

Example 7. Integral with Respect to the Counting Measure.

Suppose that    ℕ  . Any function   ℕ →  can be regarded as an 

-valued sequence  with   , and since all subsets of ℕ are measurable, every 

such sequence  can be regarded as a measurable function.

A sequence  is integrable (with respect to ) if and only if   
∞ ∞ ;

The integral of  is simple the sum   
∞  .

Instead of the general notation ℒ ℕ, the space of such sequences will be denoted by 

  or 
 .
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Lebesgue Integral

Definition: Lebesgue Integrable Functions.

Let    ℝ  , for some  ≥ . If ∈ℒℝ (or ∈ℒ  with ∈), 

then  is said to be Lebesgue integrable.
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Properties of Lebesgue Integral

Theorem: Relation between Riemann and Lebesgue Integrals.

Let      ⊆ ℝ is a bounded interval, and    → ℝ is a bounded function.

If  is Riemann integrable on  , then  is Lebesgue integrable on  .

In this case, the values of the two integrals of  coincide.
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Properties of Lebesgue Integral

Theorem: Elementary Properties.

Let    be a measure space and let ∈ℒ  .

(a) If    a.e., then ∈ℒ   and 


   .

(b) If ∈ℝ and  ∈ℒ  , then the functions    and  belong to ℒ  , 

and




   


  


,  


   


 .

In particular, ℒ   is a vector space.

(c) If  ∈ℒ   and ≤  for a.e. ∈, then 


  ≤


 .

If    for a.e. ∈ , with    , then 


  


 .
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Properties of Lebesgue Integral

(continued)

(d) An integrable function is a.e. finite.

(e) If  is a measurable function and  is a measurable set, then

inf  ≤


  ≤ sup  .

(f)   ≤ .

Theorem: Lebesgue Integral Induces a Measure.

If  is measurable with  ≥ , then  ↦ 


  is a measure on .

(What is the converse of this theorem?)
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Properties of Lebesgue Integral

Definition: Essential Supremum.

Suppose that  is a measurable function and there exists a number  such that ≤ 

a.e. Then we can define the essential supremum of  to be

esssup   inf    ≤  ae.

The essential infimum of  can be defined similarly.

ü It is a simple (but not completely trivial) consequence of this definition that 

≤ esssup  a.e.

ü A measurable function  is said to be essentially bounded

if there exists a number  such that ≤  a.e.
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Properties of Lebesgue Integral

Definition: L1 Space.

If we define    for  ∈ℒ   by

   


  ,

 is not a metric since      does not imply   .

Consider an equivalent relation on ℒ   defined by

 ∼   iff     for a.e. ∈,

and denote the quotient space ℒ  ∼ by   .

   is a vector space, with the definitions

           ,         ,      .
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Properties of Lebesgue Integral

(continued)

For      ∈  , define

        


  ,

then  is a metric on   .

Instead of writing   ∈  , we just write ∈  .
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L p Space

Definition: Lp Space.

Define the sets

ℒ     is measurable and 




∞,  ≤   ∞ .

ℒ∞    is measurable and esssup∞.

We also define the corresponding sets   .

When  is a bounded interval     and  ≤ ≤∞ , we write       .
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L p Space

Theorem: Minkowski’s and Hölder’s Inequalities.

Suppose that  and  are measurable functions. Then the following inequalities hold.

(Infinite values are allowed.)

§ Minkowski’s inequality (for  ≤   ∞ )




  


≤ 




 






,

esssup   ≤ esssup  esssup .

§ Hölder’s inequality (for     ∞ and       )




≤ 











,




 ≤ esssup


.
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L p Space

Since the previous inequalities hold in the sense of Riemann integral, it is worth taking a 

look at the proofs. Fix     ∞ and       .

Step 1. Young’s inequality.

If      , then        .

The are of the rectangle ,  cannot be larger than

sum of the areas under the functions  and    , that is

 ≤









    ,

 ≤ 


 


.
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L p Space

Step 2. Hölder’s Inequality

It is sufficient to prove for the case   ‖  ‖ ∞ and   ‖  ‖ ∞ .

Let   ‖  ‖ ,   ‖  ‖, then ‖ ‖  ‖ ‖  .

By Young’s inequality,

  ≤

 


 
.

Integrating both sides gives

‖ ‖ ≤

‖ ‖




‖ ‖


 


 


  ,

which proves the theorem.
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L p Space

Step 3. Minkowski’s Inequality

Since     is a convex function for   ,



 





≤ 

   


  



≤ 


    


   .

This means that

     ≤ 


    


                .
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L p Space

(Continued) Now, by Hölder’s inequality, we find that

‖    ‖
     ⋅   

≤           

               

≤   

   



       
 


  



 ‖  ‖  ‖  ‖‖    ‖

‖    ‖


.
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L p Space

Corollary.  Suppose that  ≤ ≤∞ .

(a)    is a vector space.

(b) The function    defined by

   


  


if  ≤   ∞ ,

   esssup   if   ∞

is a metric on   . This metric will be called the standard metric on   . 

Unless otherwise stated,    will be assumed to have this metric.
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L p Space

Example 8: Lp Space with Counting Measure.

In the special case where    ℕ   , the space  ℕ consists of the set of 

sequences  in  with the property that


  

∞





∞ for  ≤   ∞ ,

sup  ∈ℕ∞ for   ∞ .

These spaces will be denoted by   (or 
 ).

Since there are no sets of measure zero in this measure space, there is no question of 

taking equivalent classes here. The spaces   are both vector spaces and metric spaces.
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L p Space

By using counting measure and letting  and  be sequences in  (or elements of   for 

some ∈ℕ), we can obtain the following important special case of the previous theorem.

Corollary: Minkowski's and Hölder's Inequalities.

§ Minkowski's inequality (for  ≤   ∞ )


  







≤ 
  







 
  







.

§ Hölder's inequality (for     ∞ and       )


  



 ≤ 
  








  







.

Here,  and the values of the sums may be infinity.
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L p Space

Corollary: Cauchy–Bunyakovsky–Schwarz Inequality.


  



 ≤ 
  








  







.
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L p Space

Theorem: Completeness of   .

Suppose that  ≤ ≤∞ . Then the metric space    is complete.

In particular, the sequence space   is complete.

Theorem: Completion of     .

Suppose that     is a bounded interval and  ≤   ∞ .

Then the set     is dense in       .
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A Few Fundamental Theorems

Fatou's Lemma.

If  is a sequence of non-negative measurable functions and

  liminf
 → ∞

  a.e. ∈,

then  is measurable and




  ≤ liminf
 → ∞



 .
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A Few Fundamental Theorems

Monotone Convergence Theorem.

If  is a sequence of non-negative measurable functions,

and  increases monotonically to  for each  , that is, ↗ pointwise,

then  is measurable and

lim
→∞



  


 .

Corollary.

Suppse that  and  are non-negative and measurable. If  increases to  almost 

everywhere, then




  ↗


 .
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A Few Fundamental Theorems

Example 10. (A Counterexample in Riemann Integral)

Let  be a sequence that is one to one function from ℕ onto ℚ∩    .

Define     → ℝ by     if ∈  ⋯  and     otherwise.

Then   converges to the characteristic function ℚ  as  → ∞ , for each  .

For each  ,  is Riemann integrable on     for each  , but the limit function ℚ is not 

Riemann integrable.

Therefore ‘Monotone Convergence Theorem’ is not valid for Riemann integrals.
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A Few Fundamental Theorems

The Dominated Convergence Theorem (Version 1)

Let  be a sequence of measurable functions such that ≤  on , 

where  is integrable on . (In this case, we say “ is dominated by .”)

If

  lim
→∞

  a.e. ∈ pointwise,

then  is integrable on  and

lim
→∞



  


 .
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A Few Fundamental Theorems

The Dominated Convergence Theorem (Version 2)

Let  be a sequence of measurable functions such that ≤  a.e. on , 

where  is integrable on . Suppose that  is complete. 

( is said to be complete if every subset of any null set is measurable.)

If

  lim
→∞

  a.e. ∈ pointwise,

then  is integrable on  and

lim
→∞



  


 .
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A Few Fundamental Theorems

Example 11. (An Application of the Dominated Convergence Theorem)

Suppose that

§  is a sequence of Riemann integrable functions (on     ),

§  is a Riemann integrable function (on     ),

§  ≤  for each  and  ,

§ The limit function  of  is Riemann integrable.

Show that

lim
→∞





  




 lim→∞
  ,

where the integrals represent the Riemann integrals.
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A Few Fundamental Theorems

Corollary: Bounded Convergence Theorem.

Let  be a sequence of measurable functions such that ≤ on , for some 

positive number  . (In this case, we say “ is uniformly bounded on .”)

If

  lim
→∞

  a.e. ∈ pointwise,

then  is integrable on  and

lim
→∞



  


 .
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A Few Fundamental Theorems

Theorem: Relation between Improper Riemenn Integral and Lebesgue Integral.

If the improper Riemann integral


∞

∞



converges absolutely (with no singularity inside), then the Lebesgue integral


ℝ

 

exists and equals the improper Riemann integral.

Problem. Consider the case of an integral of an unbounded function with a singularity at 

the endpoint of a bounded interval. How does this compare to the previous theorem?
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Radon-Nikodym Theorem

Definition: Absolute Continuity.

Let  be a σ-algebra, and let  and  be two measures defined on  . If    for every 

set  for which   , then  is said to be absolutely continuous with respect to  . 

This is written as  ≪  .
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Radon-Nikodym Theorem

Radon-Nikodym Theorem.

Let   ∞ and   ∞ . If  is absolutely continuous with respect to , 

then there exists a  -measurable function    →  ∞ such that

 


  for every -measurable set  . (*)

In this case,  is called Radon-Nikodym derivative with respective to , and denoted by

  


.

Using this notation, (*) can be rewritten as:

 




.
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Radon-Nikodym Theorem

Example 12. (Radon-Nikodym Derivative)

Let      and  be the collection of Lebesgue measurable subsets of .

Suppose that  be the Lebesgue measure defined for .

(a) Define a measure  on  by        for closed intervals, 

and extend  on . Find 


.

(b) Define a measure  on  by      

   for closed intervals, 

and extend  on . Find 


. (Show that  is a measure.)

Give a geometric interpretation for the results of (a) and (b).
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Radon-Nikodym Theorem

Applications in Probability Theory.

The theorem is very important in extending the ideas of probability theory from probability 

masses and probability densities defined over real numbers to probability measures defined 

over arbitrary sets. It tells if and how it is possible to change from one probability measure 

to another. Specifically, the probability density function of a random variable is the 

Radon–Nikodym derivative of the induced measure with respect to some base measure 

(usually the Lebesgue measure for continuous random variables).

For example, it can be used to prove the existence of conditional expectation for probability 

measures. The latter itself is a key concept in probability theory, as conditional probability 

is just a special case of it.

(Wikipedia: Radon–Nikodym theorem, Accessed on August 18, 2024.)
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Further Topics for Study

§ Product Measure and Fubini's Theorem

§ Derivatives of Integrals

§ Weak Convergence

§ Applications in Probability Theory
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